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Abstract

Biological processes are often described by models. With the increasing amount of such biological
models, researchers encounter the question how similar these various models are and whether it
is possible to group them according to their features. The complexity of the question leads to the
problem that only partial solutions exist until now. In addition, manually studying similarities
of a large set of complex models is barely feasible. This thesis examines automatic methods
to �nd structural similarities of models in a graph representation with respect to the biological
background. Thus, a simple element-wise comparison of the graph structures is assumed to be
inappropriate. Instead, an approach is chosen to automatically �nd the most frequent structures
within the models' components. Appropriate patterns were found, which occur in more than a
half of the 445 input models. The occurrences of the resulting structures can serve as a reasonable
similarity measure for grouping the models that share many common structures. By laying the
foundation to group models, also the requisite preconditions are established for an application
like browsing through a group of models.
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1 Introduction

Biologists use models to describe complex biological systems on an abstract level. With the
increasing amount of designed models, researchers are interested in detecting models that are
relevant to particular issues. Thereby, one important aspect is the knowledge about the similarity
of the occurring components in models and their relations. The increasing amount of data makes
the manual analysis of the models' structures barely feasible. As a consequence, appropriate au-
tomatic methods for this purpose must be chosen, which can provide the desired information.
The analysis of various models in their entirety became possible through the recent research for
standardising the model encoding and storing biological models centrally. Public repositories,
such as the BioModels Database, provide access to models with their corresponding publications
(Li et al., 2010). But a structure analysis of models stored in the BioModels Database has not
yet been carried out. For a model database called KEGG, structural similarities of model com-
ponents have already been examined (Koyutürk et al., 2004; Hattori et al., 2003), but the models
di�er from those in the BioModels Database. Section 2 describes examples for research in the
�eld of �nding similarities in biological models. The aim of this thesis is to elaborate automatic
methods to identify structural similarities of models in the BioModels Database. With the ob-
tained results it becomes possible to assign the models to groups according to the similarity of
their structure. This process of assignment subsequently is called the classi�cation of models
(Section 3.5). A use case of classi�cation is the organisation of models, such that researchers can
easily browse through a group of models that is related to their work.
In the �eld of biology, the description of models can have various shapes. Therefore, standards
for encoding models were developed, such as the modelling languages CellML (Lloyd et al., 2004),
NeuroML (Gleeson et al., 2010) and SBML (Hucka et al., 2003). To reduce the complexity of
�nding structural similarities, this thesis only considers SBML encoded models. Li et al. (2010)
states, that SBML - the Systems Biology Markup Language - "[...] has so far been the most
successful standard model exchange format in this �eld". SBML is a common XML-based lan-
guage for encoding models that represent biochemical reaction networks (Hucka et al., 2003).
This representation of models illustrates meshing reactions that are responsible for a certain
process within complex biological systems. The participants of reactions are called species. For
instance, a possible reaction would be the well-known synthesis of hydrogen and oxygen into
water. Several reactions together built networks, if they share some species. In Section 3.1 the
used models and their representation are explained.
They are stored in a database, which uses graphs to represent its data (Henkel et al., 2014)
(Section 3.2). Therefore, entities are presented as vertices and their relationships as edges be-
tween them. A graph in this database, according to the above example, would then be a vertex
for the reaction that is connected to vertices representing the participating species - hydrogen,
oxygen and water. Although SBML-models can have some more entities, in this thesis only
the reaction networks are considered for a start. By focusing just on this graph representation,
the task of searching structural similarities of reaction networks is transformed into problems of
graph theory. To create a reasonable similarity measure for the models' networks represented
as graphs, it is essential to regard the network structure as a whole, rather than treating them
as a set of vertices and edges. Lakshmi and Meyyappan (2012) state that the simple pairwise
comparison of nodes and edges within a network neglects its structure, whereas it is possible
to respect the composition of network elements by viewing the graphs as similar, if they share
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many common substructures. Consequentially, the problem of detecting structural similarities
within the models is de�ned as a frequent subgraph mining task. Frequent Subgraph Mining
(abbrv. FSM) is the problem to �nd frequent occurring structures within graphs (Keyvanpour
and Azizani, 2012). A di�culty is that FSM algorithms require subgraph isomorphism testing
- the problem to decide whether a graph is embedded in another (Lakshmi and Meyyappan,
2012). This is known as an NP-complete task (Keyvanpour and Azizani, 2012). Thus, FSM
techniques still require heuristics, prior knowledge or another particular strategy to improve the
performance. Various FSM algorithms with several priorities have been developed so far and
that is why choosing an algorithm appropriate for the use case is an important element of this
thesis. Figure 1 shows the outline of this thesis.

Figure 1: Planned work�ow

The �gure shows how the proceeding for this thesis is outlined

I started with a key �gure analysis for a general overview about quantities of the models' compo-
nents. The results are presented in Section 5.1. The analysis revealed that most reactions have a
maximum of up to three participatory species, while most species in turn take part in up to three
reactions. Moreover, the major part of models contain less than 30 reactions and species. On this
basis, I chose an algorithm to automatically �nd structural similarities of the models' networks.
Section 3.3 explains the di�erent approaches, which were considered to get structure informa-
tion. The decision was made for the Frequent Subgraph Mining approach. Section 3.4 shows an
overview of FSM algorithms and describes the applied algorithm gSpan (Yan and Han, 2002),
while Section 4 describes the technical details of the implementation. Tyson and Novák (2010)
carry out functional patterns of activation and inhibition referring to the living cell (Section
2.2). Finding functional patterns as described there, would be a great achievement to show the
capability and accuracy of such an automatic working procedure for mining biologically precious
patterns and thus, could o�er the possibility to �nd so far undiscovered functional structures.
In Section 5.2 the results of the mining are described. Section 6 evaluates the results from the
computer science point of view and describes tasks for future work.
In conclusion, the FSM algorithm gSpan is applicable to �nd structural similarities within a set
of SBML-models and can ease the work for researchers in this �eld by automatically performing
the mining of patterns. In this thesis valuable patterns were found, whereas a biological inter-
pretation of the results by a domain expert is still necessary. On the basis of the results, very
useful applications can be implemented. For example, a function to search structural similar
models could be established as well as a recommender system that suggests suitable structures,
while a researcher is modelling a process.
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2 State Of The Art

The problem of searching similarities between biological models is already examined, but with
di�erent focuses. Section 2.1 shows studies of the similarities between models according to se-
mantic annotations. Semantic annotations add external knowledge to model parts by linking
them to ontologies (Alm et al., 2014). These ontologies consist of terms de�ning entities in a
domain and semantic links specifying the relations between the entities (Robinson and Bauer,
2011). Thus, the studies for similarities according to semantic annotations do not deal with the
structure of model networks, but with the meaning of their components. Nevertheless, they are
related to the topic of this thesis by proposing approaches for extracting features that can be
used to classify models of the BioModels database.
Section 2.2 describes a paper, in which functional patterns of network structures are discovered
and Section 2.3 describes approaches for �nding frequent patterns in biological networks. Occur-
rences of such patterns in model networks can serve as a signi�cant criteria for similarities and
thus, their examination is useful for the aim of this thesis. Terms used in the following, such as
the network structure, are explained more detailed in Section 3.

2.1 Similarity Of Biological Models According To Semantic Annotations

Schulz et al. (2011) examine a similarity measure for biological models according to their semantic
annotations, but ignore the network structure. Annotations give additional information for the
models and link them to web resource entries. On this basis various annotations are combined in
their work to form a new single ontology. This is mainly because the entries can have the same
meaning, but are stored in di�erent resources. Another possibility is that entries describe similar
entities - for example one species that is a special case of another - but are not related. By the
integration of various annotations, they become comparable by means of semantic text analysis.
In the paper two di�erent types of similarity measures for semantic annotations are considered.
One is based on feature vectors, where there is one feature vector per model established, which
contains entries with the number of occurrences of all regarded annotations. The other group of
measure is structure-based and is computed by pairwise comparing annotation elements.
Then, an evaluation of the two approaches for measurements is done by comparing a manual
classi�cation of the models with an automatic clustering according to the di�erent measures.
Afterwards, the measure based on feature vectors is considered more suitable. On the basis
of their results, the authors implemented a platform, where the main application is a search
for relevant models in the BioModels database. The searched models are ranked according to
the semantic similarity with the input data set. Further applications of the platform are the
clustering of models by their similarity of annotations and the visual alignment of their elements
- the matching of equivalent elements from two models.
Schulz et al. (2012) developed a heuristic to infer missing annotations in partially annotated
biological models. Their method, called "semantic propagation", is implemented for SBML-
encoded models. It provides the possibility to propagate feature vectors with entries for each
annotation. These can be used for the comparison of the models' similarity. The idea is to
establish a similarity measure that is not only based on annotations of single model elements, but
on the annotations inferred from the network structure. Additional information can be retrieved
for a model element, if it is connected to other elements. Two reactions then can be compared
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- even, if their annotations are missing - by evaluating the annotations of their participating
species. The propagation of semantic information is done simultaneously for all elements with
an initial direct similarity, where the inferred similarity becomes integrated. Applications of the
approach are an alignment of partial model annotations as well as a similarity search based on the
features propagated. Furthermore, the authors state that, because the focus is on annotations,
the revealed similarity measure could be enriched by combination with a similarity measure
focusing on the network structure.
Alm et al. (2014) examine four annotation-based methods to extract characteristic features of bi-
ological models and evaluate their applicability to determine similarities between models. SBML-
encoded models from BioModels Database are stored in a graph database for further studies.
Four di�erent model sets are used, whereof annotations from three frequent ontologies are con-
sidered. Four methods for the feature extraction are analysed and three of them are found
appropriate. These methods are based on techniques of clustering and text classi�cation. The
method considered most suitable is a bottom-up clustering based on the semantic annotations
of the models, which further utilises the information content of the referenced ontologies. The
extracted features can serve as a similarity measure to classify or compare biological models as
well as to be used for retrieval tasks.

2.2 Functional Patterns In Cellular Networks

Tyson and Novák (2010) take into account structures of networks, but only deal with models
of the living cell and focus on the function of the structures. By using their expert knowledge,
they �nd that the complex networks of the information processing within cellular models can be
decomposed into simple patterns, which ful�l a certain function within a cell. For this purpose,
they �rst search for possible structures of such pattern. Then, assigning potential processing roles
for the identi�ed motifs is studied. Furthermore, it is analysed whether such resulting pattern
serve as signi�cant modules in the information-processing of the cell and act as expected in real
biochemical networks. In the paper basic motifs are found that ful�l these expectations. They
are contained in regulatory networks of living cells. Nevertheless, the information processing
within cells is not yet completely understood and the interaction of various functional modules
requires further examination.
This thesis can take advantage of the �nding, that complex networks can be decomposed into
simple functional patterns. The occurrences of certain patterns in models' networks may serve
as a reasonable similarity measure for the network structure of the considered models.

2.3 Detecting Biological Network Patterns

Similar to the approach of the last Section 2.2, the following papers take into account the struc-
ture of models' networks by means of occurring patterns. But the focus here is on the frequency
of occurrences instead of mainly considering the function. Furthermore, the presented concepts
can be processed automatically, while analysing the function of patterns requires knowledge of
an domain expert. As mentioned above, it is assumed that occurrences of certain patterns in
models' networks may serve as a reasonable similarity measure between network structures.
Wong et al. (2011) discuss the motivation to �nd frequent occurring patterns within biological
networks and ask whether there is a correlation between the functional behaviour of such pat-
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terns with their structural topology. The authors present several existing algorithms for this
purpose. The algorithms are evaluated by experimental results, classi�ed according to several
characteristics, and their advantages as well as disadvantages are discussed.
There are already applications of �nding frequent patterns within metabolic pathways. Koyutürk
et al. (2004) de�ne metabolic pathways as "chains of reactions linked to each other by chemi-
cal compounds (metabolites) through product-substrate relationships." Their paper deals with
metabolic pathways in the KEGG database. KEGG is the abbreviation for the Kyoto Ency-
clopaedia of Genes and Genomes (Fionda and Palopoli, 2011). It mainly contains static models
that describe metabolic pathways and thus, the models di�er from the once used in this thesis.
That is the reason why there is still a need for a structure analysis for models of the BioModels
database. Nevertheless, the paper demonstrates a possibility to �nd structural similarities within
biological models, which is also a task of this thesis.
Koyutürk et al. (2004) search for frequent subgraphs within a set of metabolic pathways in the
KEGG database, where the pathways are represented as directed graphs with unique node la-
bellings. The authors state, that their approach is also applicable to various other biological
networks with only minor modi�cations at the most. They reduce the computational cost for
the algorithm by making use of the sparse nature of metabolic pathways and unique node la-
belling. Their approach aims to discover common patterns of related enzyme interactions. This
thesis takes advantage of frequent subgraph mining as well (Section 3.4), but with a focus on
SBML-models of the BioModels database.

3 Methods

The aim of this thesis is to �nd signi�cant structures of reaction networks within a set of SBML-
models, which are stored in a graph database. The next Section 3.1 describes the original source
and structure of these models, while Section 3.2 provides information about the storage and
possible querying. Di�erent approaches for mining structural information have been considered
according to their advantages and disadvantages, which are explained in Section 3.3. Section
3.4 shows an overview about common algorithms of the chosen approach that is called Frequent
Subgraph Mining. Furthermore, it describes the applied algorithm gSpan as well as the used
implementation. Section 3.5 elucidates classi�cation.

3.1 Data

The used set of models originally comes from BioModels Database release 261, whereof only
the curated branch - that means the veri�ed models - is extracted. BioModels Database is a
public repository that provides access to models with their corresponding publications (Li et al.,
2010). There are di�erent standard encodings for models, but in this thesis only SBML-encoded
models are considered. SBML is the abbreviation for the Systems Biology Markup Language,
which is a common XML-based language for encoding models that represent biochemical reaction
networks (Hucka et al., 2003). The reaction networks of SBML-models can be expressed as graph
structures as one can see in Figure 2.

1ftp://ftp.ebi.ac.uk/pub/databases/biomodels/releases/2013-11-04/
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Figure 2: Reaction network of the cell cycle by Tyson.
Figure courtesy Dr. Christian Rosenke

Figure based on BioModels Database http://www.ebi.ac.uk/biomodels-main/BIOMD0000000005

The �gure contains seven species and nine reactions as well as their relations. Hucka et al.
(2003) de�nes species as "entities such as ions and molecules that participate in reactions" and
a reaction as "some transformation, transport or binding process, typically a chemical reaction,
that can change one or more chemical species". By using a graph representation, the networks
consist of vertices for reactions as well as for species. Species are only related to reactions and
reactions in turn are only related to species. These relations equate edges between the vertices in
the graph representation. The edges can represent a relation for a reactant, product or modi�er.
Focusing on the reactions in the �gure, an incoming edge is the relation to a species acting as a
reactant and an outgoing edge is the relation to a species acting as product.
Modi�er enable a reaction, but take not part actively. Edges representing the relation to a mod-
i�er are characterised by a cycle at the end. A reaction with its participating species correspond
to a biochemical equation. Several reactions together built networks, if they share some species.
The �gure 2 shows such a network and in the following, a sub-network is described as an exam-
ple. There is one reaction, where the species "p-cyclin cdc2-P" is a reactant, the species "total
cdc2" is a modi�er and the species "p-cyclin cdc2" acts as a product. Furthermore, the species
"p-cyclin cdc2" participate in another reaction as reactant, where "p-cyclin cdc2-P" acts as a
product. As a consequence, the both reactions sharing species are linked by these species and
thus, built a network. In this speci�c case they even built a cyclic network.
In addition to the above mentioned elements, there are further components in SBML-models,
which are not considered in this thesis. Hucka et al. (2003) state that a "[...] chemical reaction
can be broken down into a number of conceptual elements: reactant species, product species,
reactions, stoichiometries, rate laws, and parameters in the rate laws". Appendix 7.1 shows an
example for an SBML-structure, but the focus is on elements regarded in this thesis - the species
and reactions. Nevertheless, another important aspect is the existence of SBML-rules, which are
mathematical expressions that can be used to add, for example, parameters and constraints to
model equations. In some SBML-models this rules are utilized to represent parts of the networks.
To reduce the complexity of �nding structural similarities, the focus in this thesis is on the graph
representation of the networks, where this rules are not taken into account.
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3.2 Model Storage And Query Language

The biological models extracted from BioModels Database are stored in a NoSQL graph database
called MaSyMoS2, which more precisely is a Neo4j database. Operating data and initial key �g-
ures are accumulated by using the query language Cypher.
By now, there exists a variety of di�erent alternatives to the longtime de-facto standard of the re-
lational databases (Partner and Vukotic, 2012). These concepts are known as NoSQL. The name
does not mean that the concepts are against the language SQL, but that they are non-relational
databases, which are not built on the basis of tables. Furthermore, they generally use non-SQL
languages and mechanisms for their interaction (Moniruzzaman and Hossain, 2013). The term
NoSQL, which was coined in 1998, rather means 'Not Only SQL' and should indicate that a
coexistence of the technologies is possible and the utility depends on the intended application.
Graph databases are a certain category of NoSQL databases. They represent their data as net-
works of interconnected objects. In computer science graphs are extensively used for modelling
and analysis (Partner and Vukotic, 2012). An example is the evaluation of network topologies
in social networks, chemical compounds or atomic connections. The usage of graph databases
is especially of interest when the focus is more on the relationships between data than on the
data itself (Moniruzzaman and Hossain, 2013). An advantage of graph databases is the visual
depiction as the example in Figure 3 shows. The graph model's structure consists of vertices and
directed, typed edges that de�ne the relationships (Hunger, 2014). Because attribute-value-pairs
named as properties can be added to both - the vertices and edges - the data model is also
called property-graph. The models used in this thesis are stored in a Neo4j database, which is
a native open-source graph database. As described in the last Section 3.1, only models with
their reactions and participatory species are considered for further examination. The graph rep-
resentation of networks presented there is similar to their graph structure in the database. The
networks consist of vertices for reactions as well as for species. They can be connected by edges
representing a relation for a reactant, product or modi�er (Henkel et al., 2014). Figure 3 shows
an example reaction as it can be retrieved from MaSyMoS similarly. The vertices for reactions
and species have an internal identi�er and the additional properties ID and NAME.

Figure 3: Reaction example in MaSyMoS

The �gure shows an SBML-reaction adopted from the visual depiction in MaSyMoS

2https://sems.uni-rostock.de/projects/masymos/
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The graph representation eases the use of algorithms of the well-founded graph theory (Partner
and Vukotic, 2012). An example is to query data by using the graph traversal, which visits a set
of nodes according to existing connections. Neo4j monitors the nodes already passed through,
with the result that each node will just be visited once (Partner and Vukotic, 2012). It remains
e�cient even with increasing depth of the considered graphs.
In this thesis the language Cypher is used to query the Neo4j database MaSyMos. Cypher is
a declarative query language, as well as SQL, but has specialized in graph querying (Hunger,
2014). Neo4j also supports other kinds of query languages like SPARQL and the imperative
language Gremlin, but Cypher is widely used for Neo4j in particular (Robinson et al., 2013).
Possible reasons for that may be the ease of reading and understanding this query language as
well as it can be used to precisely describe graphs. One can intuitively query the database for
compliance with certain patterns like using a diagram for the description. Figure 4 shows a graph
of a reaction with its participating species that is used to ask Neo4j with Cypher for matches
with this graph pattern.

Figure 4: Query example for a reaction with its participatory species

Cypher is developed to use it intuitively like drawing a graph.
This �gure shows a graph pattern, which can be used to query the database

The �gure describes the connection from a to c and b to c, which is synonymous with a species
being a reactant in a reaction, and the connection from c to d as synonym for a reaction having
a species as its product. For instance, this could be the synthesis of hydrogen and oxygen to
water. This is similarly like one would work with Cypher:

MATCH (a)-[:Is_Reactant]->(c)-[:Has_Product]->(d), (b)-[:Is_Reactant]->(c)

To receive a complete Cypher-query and get the nodes of the reaction and species, one can add
the line

RETURN a, b, c, d

at the end. The query means that one wants to search for all database entries, which match
the given pattern and get returned for each match the three species and one reaction that are
involved. It is also possible to ask for local matches around a speci�c starting point, for example,
if only participatory species of a reaction with the name water_synthesis are searched, a START-
clause can be added at the beginning of the Cypher query above. This clause could appear like

START c=node:index-name(name='water_synthesis')

13



For more information about Cypher and possible clauses see Robinson et al. (2013).
By using Cypher as query language, a key �gure analysis could be performed to retrieve general
information about the reaction networks of the used models. Examples of the utilised queries
are listed in Appendix 7.5 and the results are explained in Section 5.1. The analysis revealed
that there are several similarities within the models' networks, such as the number of reactions
as well as the number of their participating species. Nevertheless, the key �gure analysis just
gives an overview about existing quantities. To �nd structural similarities of reaction networks,
which make it possible to di�erentiate between groups of similar models, an appropriate auto-
matic methods must be chosen. The next section describes several approaches, which have been
examined for this purpose. The knowledge, gained by querying the database with Cypher, is
helpful for a reasonable decision.

3.3 Approaches For Mining Structural Information

To �nd structural similarities within the networks of biological models, three di�erent approaches
have been examined - Clustering, Graph Similarity Search and Frequent Subgraph Mining. Each
is examined below and �nally, it is decided that frequent subgraph mining best �ts the needs.
Clustering is the problem to automatically group a set of objects according to a given similar-
ity criterion (Theodoridis and Koutroumbas, 2008). There are no prede�ned classes to assign
the objects to. The aim is to �nd a hidden structure and thus, to gain new knowledge about
the data. With just a bit prior knowledge the clustering algorithm has to discover similarities
and di�erences of the data to organize groups (Nadler and Smith, 1993). For some algorithms
the number of clusters has to be determined and the best partition is found by optimizing a
cost function (Theodoridis and Koutroumbas, 2008). Others produce clustering sequences by
starting with one cluster and splitting it or starting with a cluster for each object and merging
it iteratively. The quality of the results depends on the intention of the human expert, who
has to choose a similarity measure as well as a clustering scheme (Nadler and Smith, 1993).
Nevertheless, clustering can still produce unexpected arti�cial groups, which are against human
intuition. Another problem is, that not every data set is suitable for clustering, if it does not
tend to distinguishable groups (Theodoridis and Koutroumbas, 2008). Therefore, this clustering
tendency should be examined before using a clustering algorithm.
For applying clustering methods, fully implemented solutions were searched. Apache Mahout3

is a scalable machine learning library that o�ers algorithms, among others, for clustering. The
problem is that all provided clustering methods take so called feature vectors as their input, a
characteristic vector per object of the data set. These vectors are used to compute a mathe-
matical distance between the objects. Thus, feature vectors are not designed to use the special
properties of graph structures (Riesen et al., 2007). It is assumed that generating meaningful
feature vectors for reaction networks is very di�cult without adequate knowledge about the used
model data. That is why Apache Mahout is excluded as a solution. There are also structural
clustering approaches based on graph representations, for instance Schellewald (2007) contains
papers with such a topic. Foggia et al. (2007) evaluates four di�erent graph-based clustering
methods and Elghazel et al. (2007) uses b-colouring for a new greedy graph based partition clus-
tering. Nevertheless, it is supposed that such an approach would possibly not give the desired
results according to the above mentioned problems.

3http://mahout.apache.org/
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Graph Similarity Search is the problem to �nd, within a set of graphs, the once that are similar
to a given input graph (Zhao et al., 2013). Thus, its methods are well applicable for graph
databases (Wang et al., 2009). There are two types of graph similarity search, the k-NN search
�nds the top k similar graphs and the range search �nds results within a user-de�ned similarity
score. On this basis a search function for models could be established perspectively, which deliv-
ers results with a ranking according to the similarity score. Graph similarity search algorithms
mainly consist of three steps - e�cient indexing for �ltering, distance measure and query process-
ing (Ding et al., 2014). There are various approaches with di�erent priorities. Some paper focus
on e�cient indexing, for example Wang et al. (2012) suggest a two-level index designed from
graph decomposition. Other propose e�ective �ltering without pairwise similarity comparison
(Yan et al., 2006). Ding et al. (2014) specialises on large attributed graphs and Wang et al.
(2009) developed a kernel-based method for k-NN search in large graph databases.
Furthermore, a similarity measure appropriate for graphs is necessary. Riesen et al. (2007)
states, that "[i]n contrast to statistical pattern recognition, where patterns are described by vec-
tors, graphs do not o�er a straightforward distance model like the Euclidean distance." Zheng
et al. (2014) and Zhao et al. (2013) focus on the graph edit distance for measuring the similarity.
The graph edit distance is a �exible measure that is widely used for graph approaches in research
areas like classi�cation, clustering and object recognition (Zheng et al., 2014). It measures the
dissimilarity of graphs by computing the needed distortions - addition, deletion and substitution
- of transforming one graph into another (Riesen et al., 2007). It is possible to assign di�erent
weighting to the transforming operations (Wang et al., 2009). This could enable a search function
for models with variable focus of the ranked results. Nevertheless, it may not be well applicable
as a stand-alone approach for purposes like gaining new knowlede and grouping models, because
information can just be retrieved by putting in graphs for similarity testing. Thus, interesting
unexpected structures could be ignored. Furthermore, it is questionable how precise the simi-
larity can be measured without adequate prior knowledge. Therefore, it was decided to focus
on data mining and to notice graph similarity search as a future work. Then, the performance
and correctness of a future search function may be improved with a specialised distance measure
based on the gained knowledge.
Frequent Subgraph Mining is a research area of data mining, which is specialised in graph struc-
tures (Lakshmi and Meyyappan, 2012). It is the problem to �nd the structures embedded in
graphs, so called subgraphs, that occur frequently (Keyvanpour and Azizani, 2012). The key
�gure analysis (results in Section 5.1) shows the existence of similarities within major parts of
the model's quantities. This outcome suggests, that there could be biologically precious patterns,
which occur with a higher frequency. For that reason, the decision was made to apply a frequent
subgraph mining algorithm to the set of biological models. Furthermore, using the occurrences of
the resulting frequent subgraphs as features for the models may provide a meaningful similarity
measure. Such an appropriate similarity measure can improve the grouping of models as well
as searching similar models by increasing the search speed, the exactness of the outcome and
the scalability (Keyvanpour and Azizani, 2012). In addition, �nding functional structures as
described in Tyson and Novák (2010) would be a great achievement. Hence, frequent subgraph
mining was chosen for closer examination, which follows in the next section.
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3.4 Frequent Subgraph Mining Algorithms

Given a set of graphs, frequent subgraph mining (abbrv. FSM) is the problem to �nd subgraphs
within these graphs that pass a given frequency threshold (Keyvanpour and Azizani, 2012). The
algorithms mainly consist of two steps. Candidate generation is the step to list all possibly
occurring subgraphs and frequency counting determines the number of occurrences of the can-
didates. The �rst step bears the risk to produce candidates in a exponential number according
to the size of the searched structures. The latter requires subgraph isomorphism testing - the
problem to decide whether a graph is embedded in another (Lakshmi and Meyyappan, 2012).
This problem is known as an NP-complete task (Keyvanpour and Azizani, 2012). Thus, FSM
techniques require heuristics, prior knowledge or another particular strategy to improve the per-
formance. Various FSM algorithms with several priorities for improvement have been developed
so far, which is the reason why choosing an algorithm appropriate for the use case is an impor-
tant element of this thesis. Finally, the decision was made for an algorithm called gSpan (Yan
and Han, 2002). Reasons for this decision are, among others, the supply of exact results instead
of approximate once, the combination of candidate generation and frequency counting in one
procedure and the existence of a pre-implemented version of gSpan. For a better understanding
of further characteristics, a brief overview about FSM algorithms is given below and then, gSpan
and its used implementation is described.
There are a lot of di�erent Frequent Subgraph Mining algorithms (Keyvanpour and Azizani,
2012). To choose an appropriate one for a certain application, considering important aspects of
the methods is necessary. These aspects are especially the type of input graph, the necessity
of prior background knowledge, the need for exact or just approximate results as well as for
completeness of the resulting pattern set, the available memory and the possibility of user inter-
vention. Table 1 (page 28) shows common Frequent Subgraph Mining algorithms characterised
by important features.

FSM algorithms can be di�erentiated, for example, according to their input type (Keyvanpour
and Azizani, 2012). Some algorithms take one large graph and �nd the frequent subgraphs
depending on the frequency within this graph. Other have a graph set as their input and search
for structures that occur in at least a certain number of graphs within the set. The aim of this
thesis is to �nd structural similarities in a collection of reaction networks, such that it becomes
possible to group the models according to the structures of their networks. For that reason, an
FSM algorithm with a graph set as input is assumed to be appropriate, whereby the networks
must not be combined to a large graph and considering the frequency according to the number
of graphs excludes outliers in the network structures. An example for an outlier in MaSyMoS is
one model that has several reactions, where more than 170 modi�ers are involved, whereas the
most other models have reactions with just one or two modi�ers (Section 5.1).
The candidate generation method is another important characteristic. There are mainly four
bases mentioned for these methods - join, extension, inductive logic programming and replacing.
Candidate generation by join means beginning with small frequent substructures and merging
them to bigger structures where frequent ones in turn can be joined. Extension based methods
start with frequent nodes and iteratively add one of each possible edges, while infrequent patterns
often are pruned immediately and will not be observed for further extension. By using inductive
logic programming, abbrv. ILP, �rst order predicates represent the subgraphs. Keyvanpour and
Azizani (2012) state that in the replacing strategy "[...] after detecting the frequent subgraph
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in each stage, the detected subgraph is replaced by a node in the main graph and in the next
stage, the mining process continues on a new graph obtained from graph replacing." GSpan
is an extension based algorithm that takes a graph set as its input and produces all frequent
connected subgraphs according to a given frequency threshold (Yan and Han, 2002). Therefore,
it uses a unique minimum depth �rst search code of the graphs, a lexicographic ordering on these
codes and, based on that, it builds a search tree. Because it uses the minimum DFS code of
graphs as canonical label, two graphs are isomorphic if and only if their code is equal. This fact
transforms the task into a sequential pattern mining problem, where already algorithms exist to
solve it. Furthermore, gSpan accelerates discovering patterns by combining candidate generation
and frequency counting, while e�cient pruning is performed. It also avoids false positive pruning.
GSpan is for example used by Priyadarshini and Mishra (2010) and its performance is evaluated
in comparison to the algorithms MoFa, FFSM and Gaston by Wörlein et al. (2005). The latter
have developed a software for this purpose, which is called the Parallel and Sequential Mining
Suite (abbrv. ParSeMiS4). It is a Java based project and realises the algorithms gSpan, Gaston
and Dagma as well as some extensions like CloseGraph.
The above mentioned advantages of gSpan, such as the use of a canonical labelling and the
availability of a full implementation, led to the decision of using the gSpan algorithm for the
purpose of this thesis.

3.5 Classi�cation

The aim of this is to extract structural features of model networks that can serve as a reasonable
similarity measure for the classi�cation of the networks. Classi�cation in the �eld of pattern
recognition is the problem to automatically map objects to prede�ned classes (Theodoridis and
Koutroumbas, 2008). To ensure optimal decisions for the classi�cation, prior knowledge is neces-
sary. A main task for the classi�cation is to extract suitable features (Nadler and Smith, 1993).
Assigning objects to classes often depends on the similarity of the objects to class representa-
tives and therefore, choosing an appropriate similarity measure is necessary (Theodoridis and
Koutroumbas, 2008). Most algorithms require learning to increase the correctness of the results
(Nadler and Smith, 1993). Learning means for example, that an expert has to determine misclas-
si�ed objects in iterative steps (Sharma and Kaur, 2013). A di�culty of classi�cation is to deal
with outliers or ambiguous cases, which potentially require an extra class de�ned or otherwise
they will increase the error rate of the method (Nadler and Smith, 1993). For example, MaSy-
MoS contains one model that has several reactions, where more than 170 modi�ers are involved.
The most reactions have just one or two modi�ers.
The aforementioned clustering (Section 3.3) can be seen as a special case of classi�cation (Nadler
and Smith, 1993), where the patterns have to be organized into reasonable groups without ex-
istence of prede�ned classes (Theodoridis and Koutroumbas, 2008). For further information see
(Lambusch, 2015).

4https://www2.cs.fau.de/EN/research/zold/ParSeMiS/index.html
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4 Implementation

To �nd frequent occurring patterns within a set of biological models, the "Parallel and Sequential
Mining Suite5" (abbrv. ParSeMiS) is used, which is implemented in Java and further needs the
libraries for antlr and prefuse6. Appendix 7.2 shows an adjusted method of ParSeMiS to get it
work. By means of Eclipse7 a runnable jar �le is produced. Listing 1 illustrates the proceeding
from getting an appropriate input �le for working with ParSeMiS to the post-processing for
image-�les of the patterns found.

Listing 1: Pseudocode for producing results
Get reaction networks as json -file

Substitute irrelevant data

Convert json to dot

Split graph within dot -file to unconnected graphs

Execute ParSeMiS version of gSpan

Add appearence properties to found patterns

Split file in separate files for each pattern

Create image file for each pattern

First, the relevant network data are retrieved as a json �le with the tool curl (Appendix 7.3).
Because, there are still various irrelevant data in it, they are substituted by using the tools awk
and sed. ParSeMiS is, among other �le formats, applicable to �les with graphs in a dot-format.
Thus, a script is applied to convert the json-�le to a dot-�le. The script is shown in Appendix
7.4. The dot-�le then contains one large graph for all the networks. The tool ccomps is used
to split this graph into all unconnected networks. Then, the gSpan version of ParSeMiS can
be applied to get a dot-�le with the patterns that ful�l a given frequency threshold 8. For this
thesis ParSeMiS ran on an Intel Xeon E5410 Quad-Core Processor with 16GB main memory,
2.33GHz, Debian 8 as operating system and Oracle Java SE 64bit version 1.7.0. In dot-�les
attributes for the visualisation of the graphs can be added. The tool sed is used to add colours
and other attributes to the graph elements. The tools grep and sed are used to get a �le with
the frequency of each pattern, which is contained as a comment in the output �le of ParSeMiS.
With the tool csplit the patterns within the dot-�le are split into separate �les and the name can
be chosen according to the frequency of each pattern. These dot-�les can directly be converted
to image-�les with the dot tool.

5https://github.com/timtadh/parsemis
6used versions: antlr 2.7.5, prefuse release 2007.10.21
7Version: Kepler Service Release 1, jre 1.8.0 update 40, java SE development kit 1.7.0 update 45
8java -jar ParSeMiS_final.jar �graphFile=testFile.dot

�outputFile=fragments.dot �minimumFrequency=250
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5 Results

5.1 Key Figure Analysis

The aim of the key �gure analysis is to get quantities of the vertices for models, reactions and
species as well as the edges between them. There are 1303 models in the database, whereof
462 are SBML-models. 445 of them have species and 403 have reactions. Each reaction belongs
to exactly one SBML-model and there exist 12335 reaction vertices in total. Figure 5 shows,
that each of the models has one up to 827 reactions, with an accumulation of models that have
three up to twelve reactions. The maximum amount of models, which share the same number
of reactions, is 28 models with a count of four reactions. Furthermore, there are a few outliers
with more than 100 reactions. The average number of reactions within a model accounts for 31,
while the variance is 4451 and the standard deviation is 67.

Figure 5: Models with their number of reactions

There exist 9512 species vertices in the database. 445 of the SBML-models have one up to 622
participating species (Figure 6). A noticeable accumulation of models can be found from three
up to eleven species, while there are just a few models with more than 54 Species. The average
number of species within a model amounts to 21. The variance accounts for 88 and the standard
deviation accounts for 9.
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Figure 6: Models with their number of species

In Figure 7 one can see that a large part of reactions contain three species. In general, the
reactions have one up to 194 species. The arithmetic average amounts to three, the variance to
six and the standard deviation to two.

Figure 7: Reactions with their number of species

These species can act as reactants, products or modi�ers within the reactions. Figure 8 shows
how many percent of the reactions have reactants, products or modi�er. One can see that more
than half of the reactions have only reactants and products. Furthermore, a larger percentage of
reactions have reactants, products and modi�er. There are no reactions with only modi�ers and
thus, no ones that have neither reactants nor products. From the entirety of 12335 reactions,
11411 contain reactants, 10852 products and 3694 reactions have modi�er.
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Figure 8: Percentages of reactions that have reactants, products or modi�er

The distribution from Figure 8 is re�ected in Figure 9, which shows that most reactions have
one or two reactants as well as one or two products, and no or one modi�er. The reactions have
a maximum of four reactants, 14 products and normally a maximum of 19 modi�ers. There is
just one model with six reactions that have more than 174 modi�ers with a maximum of 181
modi�ers.

Figure 9: Number of reactants, products or modi�ers of the reactions

The �gure shows all numbers of reactants and products, but only numbers of modi�ers
that are contained in more than 20 reactions

Figure 10 presents in how many reactions the species take place as reactant, product or modi�er.
Most species are contained in just one or two reactions, while the maximum of reactions in which
species are contained as reactant is 180, as product 360 and as modi�er 359.
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Figure 10: Species take place in X reactions as reactants, products or modi�er

Species, which take place in more than seven reactions,
are not shown, because there are less than 50 species for each number of reactions

Furthermore, from the entirety of 9512 species 7642 serve as reactants, 7632 as products and
2889 as modi�ers. 459 species even serve neither as reactant nor product nor modi�er.
These results could be retrieved by using the language Cypher to query the used graph database
MaSyMoS. Appendix 7.5 gives examples of the queries used for the key �gure analysis.
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5.2 Patterns Found

This section presents the results from searching frequent structures within the models. All
subgraphs could be found, which occur in at least 55 percent of the 453 input graphs. Just a few
of the 53 resulting patterns are portrayed below. The full list is in Appendix 7.6. The patterns
that occur in 100 percent of the models are just the two smallest existing structures with one
vertex and zero edges - the vertex for species (Figure 11a) and for reaction (Figure 11b).

Figure 11: Smallest patterns found

(a) Species vertex (b) Reaction vertex

. Patterns found in 453 of 453 graphs

Furthermore, the pattern of a reaction with one product is contained in 452 graphs, while the
pattern of a reaction with one reactant can just be found in 435 of the 453 graphs. The most
frequent structure with a branch occurs in 357 models and is a species that serves as reactant
for two reactions. Thus, it is the most frequent pattern that contains a vertex with two outgoing
edges, while the �rst pattern of a vertex with two incoming edges - a species as product for two
reactions - can be found in 325 graphs. The maximum overall degree of vertices is three, whereas
the subgraphs have up to two outgoing edges (see for example Figure 12a) or up to two incoming
edges (see for example Figure 12b).

Figure 12: Patterns with degree of vertices up to three

(a) Contains vertex with outgoing degree of two

Pattern found in 314 of 453 graphs

(b) Contains vertex with incoming degree of two

Pattern found in 280 of 453 graphs
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Figure 13 shows the one cyclic structure found. It consists of four vertices - two species and
two reactions - as well as four edges. All components belong to the cycle. Both species serve as
reactant for a distinct reaction and are the product of the other reaction.

Figure 13: Cyclic pattern

Pattern found in 262 of 453 graphs

With decreasing frequency, the patterns tend to be larger. Mainly structures that contain mod-
i�ers are strikingly smaller in comparison to others with similar frequency, as one can see in
Figure 14. No patterns could be found, which contain more than one modi�er.

Figure 14: Patterns containing a modi�er

(a) Smallest pattern containg a modi�er

Pattern found in 297 of 453 graphs

(b) Larger pattern containing a modi�er

Pattern found in 266 of 453 graphs
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The largest structures found have seven vertices and six edges. Examples are shown in Figure
15. Furthermore, four vertices for reactions, four edges for a reactant (Figure 15a) and four edges
for a product (Figure 15b) is the maximum amount found within the set of subgraphs.

Figure 15: Examples for large branched patterns

(a) Contains four edges for reactants

Pattern found in 254 of 453 graphs

(b) Contains four edges for products

Pattern found in 252 of 453 graphs

Figure 16 shows a structure, which is also one of the largest found patterns without branches.
Moreover, it is an example for the maximum count of species vertices, which is four, and the
maximum count of vertices generally, which is seven. As well, it contains the longest directed
path within the subgraphs, that amounts to six.

Figure 16: Example for a pattern containing the longest path

Pattern found in 269 of 453 graphs
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6 Discussion

The chosen combination of key �gure analysis and searching the most frequent patterns revealed
new knowledge about the network structure of SBML-models. This knowledge can be used to
compare structures and thus, to group models according to their reaction networks. Possible
solutions will be explained later in this section. Valuable patterns could be found. Their prop-
erties correspond to the results of the key �gure analysis. According to this analysis, more than
a half of the reactions have no modi�ers (Figure 8) and the other reactions mostly have only one
modi�er (Figure 9). These quantities are re�ected in the rare occurrences of modi�ers within the
found patterns. The key �gure analysis moreover showed that the models contain on average 31
reactions and 21 species, while most reactions have only up to three participating species and
most of the species just take part in one or two reactions. These results demonstrate that the
models' networks are sparsely populated. There are one or less branches within the patterns.
Only one of the patterns with the lowest frequency contains a species, which acts as reactant for
two reactions and another species that acts as product for two reactions. It is assumed that the
number of occurring branches is increasing with lower frequency of the patterns. A remarkable
fact is that no reaction with several reactants or products is contained in any pattern, although
nearly a half of the existing reactions have three participating species. This suggests, that reac-
tions with more than two species involved may be frequent only within a certain type of models,
such that these reactions are not spread over a large amount of models. Thus, they could not
be found with the used approach. Having more than three participating species then could be a
characteristic of a certain group of models. Examining this is a task for future work. A possible
approach for that purpose would be to use another frequent subgraph mining approach that re-
spects the number of subgraph occurrences in total instead of considering subgraphs that occur
in a certain number of graphs.
There are several patterns found, which may occur - combined to larger structures - with a lower
frequency than considered. For example Figure 15a and Figure 15b may yield a large cycle. Al-
though subgraphs are found with up to seven vertices, there is only one cycle with four vertices
found. The next larger cycle with six vertices is not contained in the results. This encourages
the assumption that cycles are relatively rare with increasing frequency or occur with a larger
number of vertices involved. The path lengths increase with the decrease in frequency of the
patterns. In this thesis only certain aspects of the models are considered, such that the found
patterns just consist of the nodes for species and reactions as well as edges for reactants, products
and modi�ers. For a complete analysis all additional information should be involved in future
studies. Examples are the so called SBML-rules - mathematical expression that are used to add,
among others, parameters and constraints to the models (Hucka et al., 2003). The following
illustrates a conspicuousness that appeared in this context. To get the input for ParSeMiS, a �le
with all relevant nodes and their edges is created and then split into connected graphs. Thereby,
a �le with 453 graphs is produced, while the database just contains 445 SBML models with
species or reactions. I assume that the problem of di�erent quantities consists in the fact that
some models have unconnected parts in their reaction networks. Their connections may only
be described by SBML rules, which remain unconsidered in this thesis. The existence of more
graphs in the �le should not interfere the mining process, because gSpan mines only frequent
connected subgraphs anyway (Yan and Han, 2002). Nevertheless, there exists a problem with
the models, which use SBML rules instead of modelling the behaviour by means of connections
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between reactions and species. Their structure can not completely be mined without considering
the speci�ed rules. For a complete analysis of the data in future studies, the rules have to be
involved in the input �le or rather nodes and edges have to be created for their expressions in
the database.
But indeed, valuable patterns were found, such as a cyclic structure (Figure 13) or a reaction
chain with a path length of seven (Figure 16). These patterns can serve as a reasonable similarity
measure to classify models according to the structure of their reaction networks. One possibility
is to directly use the evident characteristics resulting from the found patterns. For example, it
is observed that the path length increases with the decrease in the frequency of patterns. Thus,
the existence of shorter or longer paths within a model could serve as an appropriate feature for
a classi�cation. Furthermore, it is mentioned above that reactions with more than two species
involved seem to be concentrated in some models and may characterise a group of models. Other
examples are the occurrences and size of rare cycles as well as the number of branches within
the networks. As one can see, there are already various useful features, which can be extracted
from the patterns' appearance to provide grouping criteria.
Moreover, the occurrences of the found patterns may provide a great similarity measure between
model networks. Lakshmi and Meyyappan (2012) state that the simple pairwise comparison of
nodes and edges within a network completely neglects the structure, whereas viewing networks as
similar, if they share many common substructures, is a much more adequate similarity measure.
For that reason, the number of occurrences of each characteristic pattern found can be examined
within each model perspectively. Then, a feature vector for each model can be created, where
the entries correspond to the number of occurrences of each pattern. As mentioned in Section
3.3, there are fully implemented classi�cation and clustering tools that take feature vectors as
input. For example Apache Mahout9 provides such solutions. Thus, after creating the feature
vectors, these can directly be used to group the models automatically according to their network
structure. By organising the models like this, it becomes possible that researchers can easily
browse through a group of models that is related to their work. As a consequence, correlations
between models can quickly be recognized and may lead to new discoveries in the behaviour of
structural similar networks. Furthermore, the reusability of models can be increased by o�ering
the opportunity to easily �nd relevant network structures. The number of pattern occurrences
per model - needed for creating feature vectors - can e�ciently be queried from MaSyMoS with
the language Cypher. To ease the e�ort of manually translating each pattern into an appropriate
shape for a query, automatic methods for this purpose should be developed in the future.
A biological evaluation and a comparison of the found structures with the motifs of Tyson and
Novák (2010) is a task for future work, too. Matches could show the capability and accuracy of
an automatic mining procedure such as gSpan as well as so far undiscovered functional struc-
tures could be found. Furthermore, gSpan could be executed again only on thematically similar
models to discover such functional patterns for certain groups of models. The main future task
is to create a search function for models that provides ranked results according to the structural
similarity to an input model. With the results of this thesis a great step forward is made. Various
similarity criteria are found as well as the requisite preconditions for classi�cation or clustering
are established. With groups of structural similar objects, the computational costs of a ranked
similarity search can be reduced by scaling down the search space.

9http://mahout.apache.org/
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Table 1: Comparison of a selection of common FSM-Algorithms, adapted from (Keyvanpour and
Azizani, 2012) and (Lakshmi and Meyyappan, 2012), additional information for FSMA algorithm
are taken from (Wu and Chen, 2008)

Algorithm Year Input
type /
Topology

Graph
represen-
tation

Kind of mined
subgraphs /
Nature of
output

Candidate
generation

Search method /
Frequency counting
/ Search type

E�ective
application
area

Limitations

SUBDUE 1994 Labelled
single
large
graph

Adjacency
matrix

Complete set
of frequent,
connected
subgraphs

Level-wise
search

Greedy incomplete
search on minimum
description code
length

Databases
without
subgraphs
with high
frequency

Extremely
small
number of
patterns

GREW 1998 Labelled,
undi-
rected,
single
large
graph

Sparse
graph

Frequent,
connected,
maximal
subgraphs

Iterative
merging

Greedy incomplete
search on maximal
independent set

Misses many
interesting
patterns

FARMER 1998 Set of
graphs,
topology
not
limited

Trie
structure

Frequent,
connected
subgraphs

Level-wise
search ILP

Breadth �rst
search on trie
datastructure
based on
background
knowledge

Proof of
concept of
a
framework

Ine�cient

AGM 2000 Graph
DB,
topology
not
limited

Adjacency
matrix

induced
frequent
subgraphs

Vertex
extension

Complete breadth
�rst search on
canonical labels

FSG 2001 Set of
undirected
graphs

Adjacency
list

Frequent,
connected
subgraphs

One edge
extension

Complete breadth
�rst search on
transaction
identi�er (TID)
lists

Databases
with
variety of
node and
edge labels

NP-complete

HISIGRAM 2004 Labelled,
undi-
rected,
single
large
graph

Adjacency
matrix

Frequent,
connected
subgraphs

Iterative
Merging

Complete breadth
�rst search on
maximal
independent set

High-scale
sparse
graph

Ine�cient

MOFA 2002 Set of
labelled,
undirected
graphs

Adjacency
list

All frequent,
connected
subgraphs

Rightmost
extension

Complete depth
�rst search on DFS
lexicographic order

Molecular
databases

Generated
graphs may
not be
exactly
frequent

gSpan 2002 Set of
labelled,
undirected
graphs

Adjacency
list

Frequent,
connected
subgraphs

Rightmost
extension

Complete depth
�rst search on DFS
lexicographic order

Not scalable

Gaston 2004 Set of
labelled,
undirected
graphs

Hash
table

Frequent,
connected,
maximal
subgraphs

Extension Complete depth
�rst search on
embedding lists

Interesting
patterns may
be lost

FFSM 2003 Set of
labelled,
undirected
graphs

Adjacency
matrix

Frequent,
connected
subgraphs

Merging
and
extension

Complete depth
�rst search on
suboptimal
canonical
adjacency matrix
tree

NP-complete

FSMA 2008 Set of
labelled
graphs

Incidence
matrix

Frequent,
connected
subgraphs

Extension Complete breadth
�rst search on
normalized
incidence matrix

Graphs
that do not
share
special
character-
istics

The table shows a comparison of common FSM-algorithms according to important
characteristics, such as the input type, graph representation and nature of output
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7 Appendix

7.1 SBML Example With Focus On Species And Reactions

Listing 2: SBML structure, adopted from (Hucka et al., 2003)
<?xml version ="1.0" encoding ="UTF -8"?>

<sbml xmlns="http :// www.sbml.org/sbml/level1" level ="1" version ="2">

<model name=" gene_network_model">

<listOfUnitDefinitions >

...

</listOfUnitDefinitions >

<listOfCompartments >

...

</listOfCompartments >

<listOfSpecies >

<species name="RNAP" compartment ="Nuc"

initialAmount ="0.66349" />

<species name="src" compartment ="Nuc"

initialAmount ="1" boundaryCondition ="true" />

...

</listOfSpecies >

<listOfParameters >

...

</listOfParameters >

<listOfRules >

...

</listOfRules >

<listOfReactions >

<reaction name="R1" reversible ="false">

<listOfReactants >

<species Reference species ="src" />

</listOfReactants >

<listOfProducts >

<species Reference species ="RNAP"/>

</listOfProducts >

...

</reaction >

...

</listOfReactions >

</model >

</sbml >
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7.2 ParSeMiS Changes

Listing 3: The substitution for the "mine" method in Miner.java of ParSeMiS
public static Collection <Fragment > mine(Collection graphs ,

Settings settings)

{

final Statistics stats = settings.stats;

// start memoryCheck , if necessary

Thread t = null;

if (settings.memoryStatistics) {

t = memoryCheck(stats);

t.start ();

}

// search fragments

if (INFO) {

stats.searchTime -=

System.currentTimeMillis ();

stats.searchTime2 -=

LocalEnvironment.currentCPUMillis ();

}

final Collection <Fragment > expectedFragments =

settings.algorithm.initialize(graphs ,

settings.factory , settings );

Collection <Fragment > ret = settings.strategy

.search(settings.algorithm );

ret.addAll(expectedFragments );

if (INFO) {

stats.searchTime +=

System.currentTimeMillis ();

stats.searchTime2 +=

LocalEnvironment.currentCPUMillis ();

}

// filter fragments , if necessary

final FragmentFilter filter = LocalEnvironment

.env(settings.strategy ). filter;

if (filter != null) {

if (INFO) {

stats.filteringTime -=

System.currentTimeMillis ();

}

ret = filter.filter(ret);

if (INFO) {

stats.filteringTime +=

System.currentTimeMillis ();

}

}

// stop memoryCheck , if necessary

if (t != null) {

t.interrupt ();

}

return ret;

}
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7.3 Curl Command To Get Json-File With Networks

Listing 4: PHP script to convert json �le format to dot format
curl -X POST -d '{"query": "MATCH (r:SBML_REACTION )-[h]->(s:SBML_SPECIES)

RETURN r,s,h", "params ": {} }' http :// sems.uni -rostock.de :7474/ db/data/cypher

-H "Content -Type: application/json" > resultHttp.json

7.4 Script For Conversion From Json To Dot

Listing 5: PHP script to convert json �le format to dot format
<?php

$json = json_decode (file_get_contents (" WithoutHttp.json "));

$returns = $json ->data;

echo "graph { \n";

foreach ($returns as $r)

{

#var_dump ($r);

echo $r[0]->start . " [label =\" SBML_REACTION \"];" . "\n";

echo $r[0]->end . " [label =\" SBML_SPECIES \"];" . "\n";

echo $r[0]->start . " -- " . $r[0]->end . " [label =\"

" . $r[0]->type . "\"];" . "\n";

#break;

}

echo "} \n";

?>
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7.5 Examples Of Cypher Queries

Listing 6: Examples of Cypher queries for the key �gure analysis
Number of models:

MATCH (model:MODEL)

RETURN COUNT(model) AS modelsCount

Number of models with reactions (only SBML -models have reactions ):

MATCH (sbmlModel:SBML_MODEL)

WHERE sbmlModel -[: HAS_REACTION ]->()

RETURN COUNT(sbmlModel) AS modelsWithReactions

Number of existing reactions:

MATCH (reaction:SBML_REACTION)

RETURN COUNT(reaction) AS reactionsCount

Number of models that have a certain number od reactions:

MATCH (model:MODEL)-[hasReac:HAS_REACTION ]->()

WITH model , COUNT(hasReac) as numOfReactions

RETURN COUNT(model) AS numOfModels , numOfReactions

Number of reactions that have a certain number of reactants:

MATCH (reaction:SBML_REACTION )-[hasReac:HAS_REACTANT ]->()

WITH reaction , COUNT(hasReac) as numOfReactants

RETURN COUNT(reaction) as numOfReactions , numOfReactants

Number of reactions that have a certain number of modifiers:

MATCH (reaction:SBML_REACTION )-[hasMod:HAS_MODIFIER ]->()

WITH reaction , COUNT(hasMod) as numOfModifier

RETURN COUNT(reaction) as numOfReactions , numOfModifier

Number of species that take part in a certain number

of reactions as reactants:

MATCH (species:SBML_SPECIES )-[: IS_REACTANT]->(reaction:SBML_REACTION)

WITH species , COUNT(reaction) AS numReactions

RETURN COUNT(species), numReactions

Number of species that take part in a certain number

of reactions as reactants , products and modifiers:

MATCH (species:SBML_SPECIES )-[: IS_REACTANT]->(reaction:SBML_REACTION)

WHERE species -[: IS_PRODUCT]->reaction

AND species -[: IS_MODIFIER]->reaction

WITH species , COUNT(reaction) AS numReactions

RETURN COUNT(species), numReactions
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7.6 Patterns Found

The following presents the full list of results from searching frequent structures within the models.
All subgraphs could be found, which occur in at least 250 of the 453 input graphs. The graphs
can have vertices for species (oval) and reactions (rectangle). The vertices can be connected by
edges representing a relation for a reactant (yellow), product (brown) or modi�er (blue). Each
pattern is a connected graph. The number of graphs, in which a pattern occurs, is speci�ed for
each pattern on its right-hand side.

453 453 452 435

427 377 368 366

357 346
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337 323

329 319 318

314 301
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325 307 305

305 300

299 287 280
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297 281 273

288 274 274

283 273 272
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278 271 270 269

266 266 264

262 259 258
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256 254 254

254 254 253

252 250
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250
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